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ABSTRACT

Background: Preoperative assessment of lymph node metastasis (LNM) status is the
basis of individual treatment for rectal cancer (RC). However, conventional imaging
methods are not accurate enough. Materials and Methods: We collected 282 RC
patients who were divided into the training dataset (n=225) and the test dataset
(n=57) with an 8:2 scale. A large number of deep learning (DL) features and hand-
crafted radiomics (HCR) features of primary tumors were extracted from the arterial
and venous phases of the computed tomography (CT) images. Three machine learning
models, including support vector machine (SVM), k-nearest neighbor (KNN),and multi-
layer perceptron (MLP) were utilized to predict LNM status in RC patients. A stacking
nomogram was constructed by selecting optimal machine learning models for arterial
and venous phases, respectively, combined with predictive clinical features. Results:
The stacking nomogram performed well in predicting LNM status, with an area under
the curve (AUC) of 0.914 [95% confidence interval (Cl): 0.874-0.953] in the training
dataset, and an AUC of 0.942 (95%Cl: 0.886-0.997) in the test dataset. The AUC of the
stacking nomogram were higher than those of CT_reported_N_status, ASVM, and
VSVM model in the training dataset (P <0.05). However, in the test dataset, although
the AUC of the stacking nomogram was higher than the VSVM, the difference was not
obvious (P =0.1424). Conclusion: The developed deep learning radiomics stacking
nomogram showed to be effective in predicting the preoperative LNM status in RC
patients.

INTRODUCTION

Globally, colorectal cancer (CRC) is a severe
gastrointestinal malignancy, with rectal cancer (RC)
accounting for about one-third (*-2. For RC patients,
treatment strategies are determined by risk
stratification based on tumor-node-metastasis (TNM)
stage (). Several studies have demonstrated that
preoperative lymph node metastasis (LNM) status is
one of the key factors that not only determines the
scope of the surgical procedure, but also indicates the
therapeutic efficacy (4-8). Furthermore, it also has a
prognostic influence on long-term survival outcomes
of RC patients.

Traditional imaging modalities, such as
ultrasound (US), computed tomography (CT),
magnetic resonance imaging (MRI), which can
provide anatomical and morphological data, are
common methods for the clinical diagnosis of RC
patients. The American Society of Colon and Rectal
Surgeons (ASCRS) demonstrated that the sensitivity
and specificity required for detecting LNM status are
55% and 74% by CT, 67% and 78% by endorectal US
(EUS), and 66% and 76% by MRI (©), indicating that

each of them is not accurate enough for the
determination of preoperative LNM  status.
Additionally, diagnosis through imaging mainly relies
on direct observations, reflecting that the diagnostic
accuracy may be affected by the radiologist's
knowledge, diagnostic experience, employment
position, etc. ©-13), Thus, there is a great clinical need
to develop a further accurate method to assess the
preoperative LNM status in RC patients.

Radiomics, excavating of invisible features from
medical imaging, has noticeably attracted oncologists'
attention. Using selected radiomics features, namely
handcrafted features, radiomics incorporates a series
of computational techniques, including machine
learning (ML) algorithms to analyze data to improve
diagnostic, prognostic, and predictive accuracy (14-16),
Convolutional neural networks (CNN) are deep
learning models, learning from the data itself, whose
core layer is convolution, possessing some
advantages in terms of dealing with large datasets
and the ability to classify and predict the outputs of
data analysis (17-19), Both radiomics and deep learning
have shown promising results on CT imaging for
determination of LNM status (20. 21), Stacking is an
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ensemble learning technique that uses predictions for
multiple nodes to construct a new model. The
stacking method, which is composed of basic learners
and meta-learner, extracts the predictive probability
from a ML model (basic learner) as the input variable
of the meta-learner to provide a robust model for
prediction and classification. Several studies have
demonstrated that the performance of stacking
method is more stable than that of the individual clas-
sifiers (22.23),

As CT examination is cost-effective, fast, prevalent,
and is broadly utilized preoperatively for RC patients
(24, In our study, we aimed to develop and validate a
CT-based deep learning & radiomics stacking
nomogram to predict preoperative LNM status in RC
patients, which is rarely seen in our field, which is
also the innovation of our study.

MATERIALS AND METHODS

Patients

The acquisition of the imaging data and clinical
data of the cases was approved by the institutional
ethics committee of our hospital (Ethical review
number: EC-2022-KS-035). Among 454 RC patients
who were admitted to the Fourth Affiliated Hospital
of China Medical University (Shenyang, China) from
March 2016 to December 2021, 282 patients were
selected (117 female vs. 165 male ; mean age,
65.94+10.76 years old, range of age, 24-91 years old).
The inclusion and exclusion criteria are presented in
figure 1.

| 464 patients with rectal cancer were collected |
between Mar. 2016 and Dec. 2021

within two weeks
# More than 12 lymph nodes were tested

® Pathologically confirmed rectal cancer
Bxclusion: ® Complete clinicopathological information
* Image quality is poor and the image
cannot be retrieved (n=14)

® Received neoadjuvant chemoradiotherapy
before surgery (n=76)

* A stent was placed into the local
intestinal lumen of the lesion (n=16)

282 patients met the criteria ]

Patients were
stratified in an 8:2 ratio

Training set Test set
(n=225) (n=57)

(T [wrae0 | [wewa | [[veremss |

Figure 1. Flowchart of patient recruitment.

Patients were assigned into training dataset
(n=225) and test dataset (n=57) by an 8:2 ratio.
Baseline clinical characteristics of each patient,
including age, gender, smoking history, drinking
history, carbohydrate antigen 19-9 (CA19-9) level,
cancer antigen-125 (CA125) level, carcinoembryonic
antigen (CEA) level, blood routine, and four
indicators of blood lipid were obtained from
electronic medical history. Two imaging physicians
(with 9 and 25 years’ experience in abdominal
imaging) who were blinded to pathologic data of all

patients predicted the LNM status of RC patients
using CT images, addressed the differences through
discussion. The criteria of lymph node metastasis
should meet any of the following conditions: (1)
uneven reinforcement; (2) irregular boundaries; (3)
short diameter>10 mm; (4) 3 or more clustered
lymph nodes in the lymph reflux area.

CT imaging acquisition

All patients underwent biphasic (arterial and
venous phases) enhanced CT scan using Philips iCT
256 spiral CT scanner (Philips, Amsterdam,
Netherlands) preoperatively. CT parameters are as
follows: tube voltage 120 kV, tube current automatic
regulation, pitch 0.5s, transverse fault thickness
S5mm, layer spacing 5mm, and matrix 512x512. The
patient was taken in the supine position and injected
with the contrast ioxol (300 mg/mL) at 80 to 100 mL,
flow rate of 3.0-3.5mL/s with a delay of about 30 to
35s and 60 to 70s, to obtain enhanced abdominal CT
images during the arterial and venous phases,
respectively.

Feature extraction and feature screening

We imported all the CT images into the
open-source 3d-slicer software (www.3D-Slicer.com,
version 4.13.2). Firstly, images were converted into a
standardized input with an intensity range of -1024
to +1024 HU using a uniform abdominal window
(window level [WL]=50 and window width [WW]
=350). Then, the two radiologists manually contour
and segmented the primary tumors from the axial CT
images at the arterial and venous phase. The regions
of interest (ROI) includes areas of necrosis or
bleeding, but avoids normal large bowel walls and
bowel contents as much as possible. Finally, two ROI
(arterial and venous phase primary tumors) were
generated for each patient.

Subsequently, we resampled CT images to voxel
sizes of 3.0mm.The original images were
preprocessed by high and low wavelet filters, and
using the square, square-root, logarithmic,
exponential, and gradient  transformations.
Hand-crafted features were extracted using the
PyRadiomics (Python  3.7.1, version: 3.0.1).
Hand-crafted features included first-order (n=252),
including gray-level cooccurrence matrix (GLCM,
n=308), gray-level difference matrix (GLDM, n=196),
gray-level size zone matrix (GLSZM, n=224), and grey
-level run-length matrix (GLRLM, n=224).

In addition, a CNN ResNet50 model was used for
deep learning feature extraction. First, the maximum
cross section of lesions was selected from the
manually delineated ROIs of arterial phase and
venous phase as the input model, the features of the
avgpool layer of the model were extracted, and the
deep learning features of arterial phase and venous
phase were obtained.

A total of 3254 features (2048 deep learning


http://dx.doi.org/10.52547/ijrr.21.2.13
https://mail.ijrr.com/article-1-4723-en.html

[ Downloaded from mail.ijrr.com on 2025-11-02 ]

[ DOI: 10.52547/ijrr.21.2.13]

Liu et al. / Radiomics of regional lymph node metastasis in rectal cancer 269

features and 1204 hand-crafted features) were
extracted from the segmented ROI of each CT image.
Normalization of all features was carried out to a
standardized numerical range. First, the intraclass
correlation coefficient (intra-ICC)/interclass
correlation coefficient (inter-ICC) ratio was used to
assess the stability of two radiologists' results in the
tumor delineation. Features with an ICC> 0.75 were
retained. The correlation coefficients within the
features were calculated using the Spearman
correlation with a threshold of 0.9, retaining only one
feature when it was highly correlated. Then, the
Mann-Whitney U test (P<0.05) was used to eliminate
redundant features that were ineffective for
classification. Finally, the lasso regression combined
with cross-validation was utilized to screen the most
predictive features from the remaining features. The
study workflow is shown in figure 2.
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Figure 2. Workflow for this deep learning and radiomics study,
consisting of image segmentation, feature extraction, feature
selection, and model construction.

Construction and evaluation of the predictive
model

Three ML models, including SVM, MLP, and KNN
were used to develop prediction models (at arterial
and venous phases) for LNM status before surgery,
and the test dataset was utilized to examine the
effectiveness of the ML models derived from the
training set.

We calculated the AUC of the receiver operating
curve (ROC) and the ACC of three ML models in the
training dataset and test dataset to calculate their
95% CI. The three ML models were compared, and
the most efficient ML model was selected. The most
efficient ML models for the arterial and venous
phases were classified as Amodel and Vmodel,
respectively. In addition, predictive clinical features
were selected using Fisher's exact test, Chi-square
test and the t-test (P<0.05). Finally, a stacking
nomogram was constructed via combining the most
efficient ML models of the arterial and venous phases
and the predictive clinical features. This stacking
nomogram was validated by the Hosmer-Lemeshow
test.

The performance of the clinical models, Amodel,
Vmodel, and stacking nomogram was evaluated using
accuracy, AUC, specificity, and sensitivity .ROC curves
were compared using the DeLong test. We chose
calibration curves to measure the consistency of the
predicted and true values of the stacking nomogram.

The decision curve is used to evaluate the
standardized net benefit at different thresholds for
different four models.

Statistical analysis

We used the R software (https:www.r-project.org,
version:4.1.2) and Anaconda (https:www.anaconda.
com, version: Python3.7) for the statistical analysis.
We used independence t-test to compare continuous
type variables and we used the Chi-square test or
Fisher's exact test for comparison of categorical
variables. P<0.05 of two-sided was seen statistically
significant.

RESULTS

Clinical characteristics

The study included a total of 282 patients (65.94
10.76 years old; mean age, 65.94 years old).
CT_reported_N_status was statistically different
between the LNM- and LNM+ groups (P<0.05). There
were no significant differences (P>0.05) between the
LNM- and LNM+ groups in terms of age, gender,
smoking history, CEA level, CA12-5 level, CA19-9
level, blood routine index, and four indicators of
blood lipid in the training and test datasets. Patients’
basic clinical characteristics are presented in table 1.

Feature screening

A total of 3254 features (2048 deep learning
features and 1204 hand-crafted features) were
extracted from the ROI of each CT segment. Firstly,
the total arterial / venous phase features have been
excluded for 83 and 94 features, respectively,
according to 1CC<0.75. Additionally, 2249/2252
features were retained based on Spearman
correlation coefficient analysis. Then, 64 and 57
features were screened out through Mann-Whitney U
test. Ultimately, the final 16 and 14 arterial / venous
features were determined by Lasso regression. The A
value of the minimum error was chosen as the pa-
rameter to determine 16 arterial phase (lambda =
0.0395) and 14 venous phase (lambda=0.0327)
features. The selected features and the feature
weights are shown in figures 3A & 3B.

Development of the ML models

The AUC values and ROC curves of the three ML
models are shown in table 2 and figure 4. The AUC
values of the three machine models indicate that the
established radiomics model can predict the
preoperative RC LNM status and have a satisfactory
performance. According to the results of Delong test,
we selected SVM as the best model of arterial phase
and venous phase, and the accuracy of the arterial
phase SVM (ASVM) and venous phase SVM (VSVM)
training sets was 0.787 and 0.791, specificity of 0.743
and 0.826, and sensitivity of 0.864 and 0.728,
respectively. The arterial phase (ASVM) and venous
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phase (VSVM) test sets had accuracy of 0.754 and
0.842, specificity of 0.686 and 0.800, and sensitivity
of 0.864 and 0.909 respectively. In the training
dataset, the AUC of SVM was higher than the KNN

Table 1. Statistical analysis results of clinical characteristics

and MLP in both arterial and venous phases (P<0.05).
However, in the test dataset, although the AUC of
ASVM was higher than the AMLP, the difference was
not notable (P=0.4234).

Figure 3. 16 selected arterial phase features (A) and 14 selected venous phase features (B).

.. Training set (n=225) Test set (n=57)
Characteristic [NM-(n=144) | LNM+(n=81) P LNM-(n=35) INM+(n=22) P
Basic clinical data
Age, (mean + SD) (years) 66.99+10.37 64.51+11.56 0.100 64.83+10.92 66.09+9.78 0.660
Gender 0.202 0.072
Male 89(84.5) 43(47.5) 17(20.3) 17(20.3)
Female 55(59.5) 38(33.5) 18(14.7) 6(9.3)
Smoking 0.749 0.682
No 102(103.0) 59(58.0) 22(22.7) 15(14.3)
Yes 42 (41.0) 22(23.0) 13(12.3) 7(7.7)
Routine blood test
HGB (g/L) 129.46+19.17 125.35+22.95 0.152 132.17413.18 123.32421.31 0.057
RBC (107%/L) 4.37+0.58 4.24+0.55 0.104 4.35+0.43 4.204£0.38 0.190
WBC (10°/L) 6.47+1.85 6.7912.12 0.237 6.55+1.96 6.54+1.83 0.986
PLT (10°/L) 229.32+71.60 242.03+83.10 0.229 224.66+78.38 244.12+76.23 0.360
Lymphocyte(10°/L) 1.58+0.58 1.56+0.55 0.792 1.65+0.62 1.95+1.27 0.231
Monocyte(10°/L) 0.46+0.23 0.46+0.18 0.927 0.42+0.15 0.66+1.00 0.166
Neutrophil(10”/L) 4.25+1.61 4.55+1.95 0.215 4.24+1.93 4.22+0.97 0.973
Lipid metabolism in serum (mmol/L)
TG 1.49+1.15 1.33+0.55 0.244 1.43+0.86 1.40+0.60 0.882
Cholesterol 4.77+0.92 4.64+0.82 0.276 4.57+1.13 4.62+1.16 0.877
HDL 1.23+0.83 1.17+0.29 0.516 1.16+0.32 1.08+0.27 0.338
LDL 2.94+0.72 2.85+0.75 0.376 2.76+0.97 3.03+1.16 0.347
Serum tumor markers
CEA (25ng/mL) 0.526 0.012°
No 88(85.8) 46(48.2) 26(21.5) 9(13.5)
Yes 56(58.2) 35(32.8) 9(13.5) 13(8.5)
CA19-9 (>37U/mL) 0.289 0.075
No 128(125.4) 68(70.6) 32(29.5) 16(18.5)
Yes 16(18.6) 13(10.4) 3(5.5) 6(3.5)
CA12-5 (>30U/mL) 0.620 0.053
No 142(141.4) 79(79.6) 35(33.2) 19(20.8)
Yes 2(2.6) 2(1.4) 0(1.8) 3(1.2)
CT reported N status 0.000 0.001"
0 101(83.2) 29(46.8) 22(16.0) 4(10.0)
1 43(60.8) 52(34.2) 13(19.0) 18(12.0)
SD, standard deviation; HDL,high density lipoprotein ;LDL,low density lipoprotein ;TG,triglyceride;
ICEA, carcinoembryonic antigen; CA 19-9, carbohydrate antigen 19-9; CA 125, carbohydrate antigen 125, *P < 0.05
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model-name | Accuracy AUC 95%Cl Sensitivity | Specificity dataset

ASVM 0.787 0.849 0.796~0.902 0.864 0.743 training set
ASVM 0.754 0.851 0.751~0.951 0.864 0.686 testing set
AKNN 0.738 0.774 0.714~0.833 0.679 0.771 training set
AKNN 0.614 0.742 0.617~0.867 0.909 0.429 testing set
AMLP 0.698 0.795 0.737~0.854 0.889 0.597 training set
AMLP 0.825 0.805 0.676~0.934 0.591 0.971 testing set
VSVM 0.791 0.851 0.800~0.903 0.728 0.826 training set
VSVM 0.842 0.892 0.808~0.977 0.909 0.800 testing set
VKNN 0.729 0.758 0.695~0.821 0.605 0.799 training set
VKNN 0.649 0.770 0.651~0.889 0.909 0.486 testing set
VMLP 0.729 0.790 0.730~0.851 0.840 0.667 training set
VMLP 0.737 0.764 0.639~0.889 0.818 0.686 testing set

IASVM:Arterial phase support vector machine; VSVM:Venous phase support vector machine;

IAKNN:Arterial phase k-nearest neighbor;VKNN:Venous phase k-nearest neighbor;

IAMLP:Arterial phase multi-layer perceptron; VMLP:Venous phase multi-layer perceptron;

(a)

CT_reported_N_status, 0.914 vs. 0.849 vs. 0.851 vs.

2 0.672) and the test dataset (stacking nomogram vs.
ASVM vs. VSVM vs. CT_reported_N_status, 0.942 vs.
2 0.851 vs. 0.892 vs. 0.723) was superior to ASVM,
VSVM, and CT_reported_status. However, the DeLong
= test showed that the ROC curves of the stacking
= nomogram and the VSVM did not significantly differ
83 , in the test dataset (P=0.1424). Figure 6 shows the
. —— AKNN:AUC=0.774 . . .
-  VKNNAUG=0.758 calibration curve of the stacking nomogram,
o — AMLP:AUC=0.795 indicating that the predicted values are in good
e - VMLP:AUC=0.780 . ..
. o ASVMAUG=0.829 agreement with the actual values. The decision curve
24, —— VSVM:AUC=0851 (figure 7) illustrates a good net benefit of LNM.
00 02 04 06 08 10 Compared with the other three models
1-specificities (CT_reported_N_status, ASVM, and VSVM), RC
(b) patients could benefit more from the stacking
o - nomogram when the probability thresholds in the
training dataset and the test dataset are between 0.2
@ | and 0.7.
(=]
Point o 10 20 30 40 50 60 70 80 20 100
w oints:
23]
=
E - ASYMP 02 025 03 0.35 04 045 0s 0.58 06 085 07 075
LR — AKNN:AUC=0.774 VSVMP - - . — - P, P, .
— VKNN.AUC=O‘758 0 025 03 035 4 045 -] 55 0 65 07
o — AMLP:AUC=0.795 CT_reported_N_status  ————
° VMLP:AUC=0.790 °
—— ASVM:AUC=0.849 Total Points .
o | — VSVM:AUC=0.851 ] 20 40 60 80 100 120 140 160 180 200
o
00 02 04 06 08 10 Risk P -

1-specificities
Figure 4. Receiver operating characteristic (ROC) curves at
arterial phase and venous phase in the training set (a) and test
set (b) for three machine models: KNN, MLP, SVM.

Construction of stacking nomogram

We recorded the probability of predicting LNM+
by the SVM model in the arterial and venous phase as
ASVMP and VSVMP, respectively. The ASVMP and
VSVMP were integrated with CT_reported_N_status
to construct a stacking nomogram by the logistic
regression, as shown in figure 5. The Hosmer-
Lemeshow test indicated that the stacking nomogram
has a good fit (P=0.149). The performance of the
CT_reported_N_status, ASVM, VSVM, and stacking
nomogram was assessed and compared (table 3). The
AUC of the stacking nomogram in the training dataset
(stacking nomogram vs. ASVM vs. VSVM vs.

Figure 5. Stacking nomogram combining ASVMP, VSVMP, and
CT_reported_N_status.

Table 3. Prediction performance of four models in the training
and test set and test set.

model-name|Accuracy | AUC 95%c1  [Sensi[sPeci-| i aset
tivity | ficity

CT_reported

0.680 |0.672|0.607~0.736 |0.642|0.701 |training set
_status

CT_reported

0.702 |0.723|0.608~0.839|0.818|0.629| test set
_status

ASVM 0.787 |0.849]0.796~0.902 |0.864|0.743 |training set

ASVM 0.754 0.851|0.751~0.951|0.864|0.686| test set

VSVM 0.791 |0.851|0.800~0.903 |0.728|0.826 |training set

VSVM 0.842 |0.892|0.808~0.977 |0.909]0.800| test set
stacking | g5e 10.914( 0.874~0.953 |0.901|0.833 [training set
nomogram

stacking | 595 |0.942(0.886~0.997 [0.955|0.857| test set
nomogram
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Figure 6. Receiver operating characteristic (ROC) curves for
training (a) and test set (b) for four models:
CT_reported_N_status, ASVM, VSVM and stacking nomogram.
Stacking nomogram calibration curves for each set. (c) The
calibration curves of the stacking nomograms in the training
set. (d) The calibration curves of the stacking nomograms in
the test set. The X-axis represents the predicted risk of lymph
node metastasis. The Y-axis represents the actual lymph node
metastasis rate.
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Figure 7. Decision curve analysis of the CT_reported_N_status,

ASVM, VSVM and stacking nomogram in the training set (a)
and test set (b). The Y-axis measures the net benefit. The

brown, blue, green, and red lines represent CT-reported-N-
status, ASVM, VSVM and Stacking nomogram, respectively.

The black line indicates the hypothesis that no patients would
develop lymph node metastasis, and the grey line indicates
the hypothesis that all patients would develop lymph node
metastasis. The result of the curve shows that the stacking
nomogram has better predictive ability than ASVM (green),

VSVM (blue), and CT-reported-N-status (brown) when the high

-risk threshold (X-axis) is 0.2-0.7 both training set (a) and test

set (b).

DISCUSSION

It is noteworthy that LNM status is a key determi-
nant of neoadjuvant therapy or surgical resection.
The present study explored the value of deep learn-
ing radiomics based on biphasic contrast-enhanced
CT in the preoperative prediction of LNM status in RC
patients. Previous studies have mainly evaluated the

characteristics of single-phase CT. The present study
provided a promising prediction model, according to
the values of AUC, sensitivity, and specificity, for the
LNM status in RC patients based on the CT imaging
features at arterial and venous phases. Non-contrast-
enhanced CT radiomics model was not used; on the
one hand, the external contour range of the lesion
appeared after contrast enhancement for more
predictive information; on the other hand, the non-
contrast-enhanced CT segmentation of the tumor
lesion has some limitations, especially when the early
-stage primary tumor is small, which may lead to
some unnecessary errors. Several studies (20.25) have
shown that the contrast-enhanced CT radiomics
model will be significantly superior to the non-
contrast-enhanced CT radiomics model. Cheng et al
(25) predicted LNM status in colorectal cancer patients
using non-contrast-enhanced CT, arterial phase CT,
and venous phase CT with AUC values of 0.636,
0.728, and 0.690, respectively, suggesting that the
results of arterial phase CT and venous phase CT
were superior to non-contrast-enhanced CT.
Therefore, we recommend the use of contrast-
enhanced CT to evaluate the LNM status in the next
studies.

The ability of radiomics to analyze the entire tu-
mor volume eliminates bias error similar to
pathological sampling, which is also a potential ad-
vantage of radiomics analysis (26). In the present
study, it was attempted to evaluate 3,254 CT features
at arterial and venous phases, including 2,048 deep
learning and 1,204 hand-crafted features, and higher-
order features were selected for the radiomics
analysis, such as exponential, gradient,
logarithmic, square, square root, and wavelet
features. Hand-crafted features (3 out of 7)
were identified as textural features,
including gradient_glcm_Correlation and
exponential_gldm_Dependence Variance, and the
remaining were first-order features, reflecting
differences in tumor intensity and intra-tumor
texture in images. This indicates that tumor
heterogeneity may be related to LNM status, because
first-order-, GLCM-, and GLDM-based textural
features are mainly identified to reflect intratumoral
heterogeneity and the irregularity of the composition
(26-28), confirming the superiority of textural features
in determining LNM status. Previous studies (29-30)
have shown that textural analysis is advantageous for
diagnosis, guiding treatment, and predicting
prognosis. NaLaeEun et al (29 demonstrated that
textural features were associated with a complete
pathological response after neoadjuvant
chemoradiotherapy of breast cancer patients.
Texture features could differentiate KRAS status
based on T2-MRI images (30).

In addition, numerous studies on disease
classification, differential diagnosis, and predictive
prognostic analysis showed that deep learning could
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better promote the radiomics analysis 31-33). Most of
the features that we screened (23 out of 30) were
deep learning features, suggesting that deep learning
plays a more pronounced predictive role in regional
LNM in RC, which is similar to previously reported
findings (2134-35), Using the deep learning models
constructed by the Resnet-50 algorithm, we could
obtain ML models with good feature learning and
feature representation capabilities. The ResNet is
mainly based on the residual learning mechanism,
which is not only simple, fast, efficient, and accurate,
but also has a better performance in object detection,
image segmentation and classification (36.37). Studies
have shown that the Resnet50-based CNN
algorithms could be used to detect and classify
clinicopathological features with satisfactory results
(38-39), A study on the benign and malignant diagnosis
of pulmonary nodules showed a diagnostic accuracy
of 873% and an AUC of 0907 using the
three-dimensional (3D) ResNet50 (39,

A nomogram for predicting the preoperative LNM
status in colorectal cancer was proposed by Huang et
al. 49, including the radiomics signature, CT-reported
LN status, and CEA level. The stacking nomogram
proposed in the current study, based on two most
efficient ML models in the arterial and venous phases,
and CT-reported LN status, also showed a strong
predictive capability and is higher than the previous
studies. Some studies have shown that a high
preoperative CEA level in patients may increase the
risk of LNM and may require regular follow-up for
close monitoring of LNM status in RC patients (41-42),
The preoperative CEA level in the present study was
not statistically significant in predicting LNM status
in RC patients, which is consistent with the data from
previous studies (43.44), and this could be related to
the noticeable heterogeneity in the expression of
rectal cancer in multiple molecules, including CEA. It
has been shown that about 70% of colorectal tumors
are mainly composed of CEA-negative cell lines, with
extremely low or no CEA secretion (5. In addition,
elevated circulating CEA level was found in some
benign tumors and inflammatory diseases, and the
specificity of CEA for the diagnosis of primary
gastrointestinal tumors is limited (46 47).

In the present study, three ML models of MLP,
SVM, and KNN were used, and it was attempted to
select the most efficient ML model as the first layer
input model of the stacking nomogram, which not
only improved the final model "fault tolerance", but
also the three ML models exhibited a promising
capability for prediction of the LNM status in RC
patients. Then, a 2-layer stacking ensemble model
was established, consisting of base learners and meta
-learners. We employed 3 models (ASVM, VSVM, and
CT _ report _ status) as the base learners. Each base
learner generated a predictive value for a given
binary outcome of the RC patients' LNM status. For
the meta-learners, 3 predicted values from the base

learners were used as input variables for the final
prediction. The stacking nomogram had AUCs
ranging from 0.914 to 0.942, which is higher than the
range reported recently (2548). The nomogram model
constructed by Su et al. based on T2WI radiomics has
a good diagnostic value for LNM in RC patients, with
an AUC value of 0.891-0.902 (48). A systematic review
and meta-analysis showed that the AUC of
per-patient was 0.808 (0.739-0.876) and 0.917
(0.882-0.952) in radiomics and deep learning models
of RC, respectively (“49), which is similar to the results
of the present study. This suggests that deep learning
radiomics can be used for tumor diagnosis and
treatment guidance in clinical practice through
non-invasive evaluation of human tissues, thereby
making the treatment further appropriate,
particularly for "personalized medicine".

The present study has some limitations. First, the
limited number of patients were all from our hospital
located at the Northeast China. Although the present
study showed satisfactory preliminary results,
further multicenter study is required. Second, the
present study only evaluated the characteristics of
the primary tumor without considering the
surrounding lymph nodes, which could be due to the
challenge of difficulty in comparing the imaging and
pathology of the lymph nodes. Last but not least,
deep learning in this study only used images of the
maximum cross-sectional area of tumors as input to
the ResNet-50 model. The use of 3D tumors should be
considered in the future deep learning models.

In all, we established a deep learning radiomics
stacking nomogram model to predict the status of
regional lymph node metastasis before treatment,
which shows high predictive ability and clinical
utility to assist clinicians in diagnosis and treatment
decisions.
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